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ABSTRACT 

The study of group codes as an ideal in a group algebra has been developed long time 

ago. If char(F) does not divides G , then FG is semisimple, and hence decomposes 

into a direct sum 
i

i
FG FGe= ⊕  where 

i
FGe  are minimal ideals generated by the 

idempotent ei. The idempotent ei provides some useful information on determining 
the minimum distance of group codes. In this paper, we study dihedral group codes 
generated by linear idempotents and nonlinear idempotents for dihedral groups of 
order 6, 8, 10 and 12. Our primary task is to determine the parameters of these 

families of group codes in order to obtain codes which near to attain the Singleton 
bound. 
 
Keywords: Group algebra, group codes, Singleton bound, linear idempotents, 
nonlinear idempotents. 

 

 

1. INTRODUCTION 

 Error correction or detection has become an important issue with the 

problem of reliable communication over noisy channels. Since then group 
algebra codes have been a focus of interest in the mathematical community 

in relating codes structures by using algebraic structures. Group algebra 

codes gained interest after Berman showed in 1967 that cyclic codes and 
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Reed Muller codes can be studied as ideals in a group algebra FG, where F 
is a finite field and G is considered, in each case, a finite cyclic group and a 

2-group respectively. On the other hands, the first investigations of non-

Abelian group algebra code was done by F. J. Macwilliams. Recently, P. 
Hurley and T. Hurley (Hurley (2007)) construct group ring codes from zero 

divisors and unit in group rings in which case the codes defined may not be 

ideal. In this paper, we study codes defined over group algebra, which is an 

ideal.  
 

            A group algebra code in FG  is defined as a one-sided (left or right) 

ideal in FG . If G  is cyclic or Abelian, then every ideal in FG  is the cyclic 

or Abelian code, respectively. Refer (Berman (1967) and (Berman (1989)) 

for more details on cyclic and abelian group codes, and  (How and Denis 

(2004)) for a class of nonabelian group algebra codes. The studies of group 

algebra code in FG  depended solidly on the choices of F and G . In 

general, we can study group algebra code in FG  from the following point of 

views: If gcd ( ( )char F , G ) = 1, then FG is semisimple (refer Theorem 

15.2 in (Isaacs, 1997)), that is, FG  is a direct sum of some minimal ideals, 

say 
1

s

j
j

FG I
=

= ⊕ . Each 
j

I is generated by an idempotent 
j

e , i.e., 
j j

I FGe= . 

Let 
1

{ }s

j j
E e

=
= . Any ideal I of FG is a direct sum of some of the 

j
I , 

say
1

t

jkk
I I

=
= ⊕ , t ≤ s. We say that I is generated by 

1
{ }t

j kk
e

=
. Let 

1
\{ }t

j kk
E eµ

=
= . 

Then { }0
j jr r

I u FG ue e µ= ∈ = ∀ ∈ .  

 

 For technical reason, we denote I by I
µ
. Note that µ plays the role 

of parity check matrix defining a linear code, and so we expect to derive 

some information about the minimum distance of I
µ
 from µ . Recall some 

notation and definitions: The length n  of a group code I FG
µ
⊲ is defined to 

be G . The weight of any element 
g

g G

u gλ
∈
∑=  is equal to { }0

g g
λ λ ≠ and is 

denoted by ( )wt u . If I
µ
 has dimension k (as a vector space over F ) and 

minimum distance ( ) ( ){ }min 0
u

d d I wt u u I
µ

= = ≠ ∈ , then I
µ  

is called an 

( ), ,n k d –group code. For more information on coding theory, please refer 

(Sloane and Macwilliam, 1978). 
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 In this paper, we consider group algebra codes defined over dihedral 
groups of order 6, 8, 10 and 12. Some basics properties of nonabelian group 

codes will be derived in Section 2, then some properties in dihedral group 

will be derived. Finally, the minimum distance of dihedral groups of order 6, 
8, 10 and 12 will be studies in Section 3 and hence some group algebra 

codes which near to attain the Singleton bound will be obtained. 
 
 

2. PRELIMINARY 

 Most objects in this paper are represented in term of group algebra 

FG . The group algebra { }|
g g

g G

FG a g a F
∈
∑= ∈  is the free F − module over 

a finite group G  where G  can be regarded as an F − basis for FG . The 

addition and scalar multiplication are defined as follows. For any 

g
g G

u gλ
∈
∑= , 

g
g G

v g FGβ
∈
∑= ∈  and Fλ ∈ , ( )g g

g G

u v gλ β
∈
∑+ = +  and 

( )
g

g G

u gλ λλ
∈

∑= . Moreover, multiplication in G  induces multiplication in 

FG  as .
k

k G

u v kγ
∈

∑=  where 
k g h

gh k G

γ λ β
= ∈

∑= . By these operations, FG  is an 

associative F − algebra with identity 1 1 1
F G

= where 1
G
and 1

F
are the identity 

elements of G  and F , respectively. G  can be viewed as contained in FG , 

and hence the elements of G  constitute the coding basis for codes viewed as 

subspaces of FG . We view G  as 
g G

g
∈

∑
 

in FG . Moreover, for 

g
g G

A a g FG
∈

∑= ∈ , define ( 1) 1

g
g G

A a g
− −

∈
∑= . For more information on group 

algebra, please refer (Passman (1977)). 
  

From now onward, we use the following definition. 
 

Definition 2.1. Let G be a group and F be a field such that 

( )( )gcd , 1char F G = . If E is the set of all idempotents of FG and Eµ ⊆ , 

then the group code generated by µ is { }0I u FG ue e
µ

µ= ∈ = ∀ ∈ . 

 

Proposition 2.2. The group algebra codes I
µ
 defined in Definition 2.1 is a 

linear code over F . 
            
           For any positive integer 2n ≥ , the dihedral group of order 2n can be 

represented as { }2 1

2
| 0 1,0 1, 1,

i j n

n
D r s i n j r s rs sr

−= ≤ ≤ − ≤ ≤ = = = . From 

now onward, all groups G  are 
2n

D  and all group algebra codes I
µ  

are 
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defined over
2n

D  . First, to obtain the dimension of I
µ
, we need the following 

results.  

 

Theorem 2.3.  (Theorem 8.7, James and Liebeck (1993)). Let K be a finite 

group of order n , and F be an algebraically closed field with 

( )( )gcd , 1char F G = . Then 
1
( ) ... ( )

n ns
FK Mat F Mat F≅ ⊕ ⊕ , where 

2 2

1
...

s
n n n= + + . FK has exactly s nonisomorphic irreducible modules, of 

dimensions 
1
,..., ,

s
n n  and s is the number of conjugacy classes of K . 

 

Remark 2.4. Since ( ) ( )i j
e E e Ei jL N

FG FGe FGe
∈ ∈

= ⊕ ⊕ ⊕  where 
L

E  is the set 

consists of all linear idempotents in FG and 
N

E  is the set consists of all 

nonlinear idempotents in FG ; and furthermore
L N

E E E= ∪ . Note that if 

i L
e E∈ , then ( )dim 1

i
FGe = ; and if 

i N
e E∈ , then ( )dim 2

i
FGe = .  

(Section 18.3, James and Liebeck (1993)). 
 

Therefore, if 
L N

µ µ µ= ∪  where 
L L

Eµ ⊆  and 
N N

Eµ ⊆ , then 

( ) ( ) 2
dim dim 2

L N
I FG

µ
µ µ= − − .  

 

As ( )dim 2FG G n= = , then ( ) 2
dim 2 2

L N
I n

µ
µ µ= − − . 

 

            The next theorem on the number of conjugacy classes of 
2 n

D  can be 

found in (Section 18.3; James and Liebeck (1993)). 
 

Theorem 2.5. The conjugacy classes of 
2 n

D  are as follows: 

(i) If n  is odd, then 
2 n

D  has 
1

( 3)
2

n +  conjugacy classes: 

1 ( 1) / 2 ( 1) / 2 1{1},{ , },...,{ , },{ , ,..., }n n n
r r r r s rs r s

− − − − − . 
 

(ii) If  n  is even and 2n m= , then 
2 n

D  has 3m + conjugacy classes: 

                        
1 1 ( 1) 2 2 1{1},{ },{ , },...,{ , },{ :0 1},{ :0 1}.m m m j j

r r r r r r s j m r s j m
− − − − − +≤ ≤ − ≤ ≤ −

 

By using Theorem 2.5 and results from (Chapter 13, 14 and 15; James and 

Liebeck (1993)), we obtain the following proposition. Note that 
2

'
n

D  denote 

the commutator subgroup of 
2 n

D . 
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Proposition 2.6. Let 
2 n

D  be the dihedral group of order 2n , where n  is any 

integer, then  

(a) ( )
( )

( )
2

1
  3 ,   if  is prime,

2

1
  6 ,   if 2 ,  where  is any prime.

2

n

n n

Irr D

n n p p


+


= 


+ =

 

(b) 
2

2

  ,   if  is prime,
'

  ,   if 2 ,  where  is a prime.
n

r n

D

r n p p




= 
 =

 

(c) 
2n

D  has 2

2
'

n

n

D
D

 linear characters, where 

2

2

  2,   if  is prime,

'
  4,   if 2 ,  where  is a prime.

n

n

n
D

D
n p p


= 

=

 

(d) 
2n

D  has ϖ  non-linear characters, where 

1
  ,   if  is prime,

2

2
  ,   if 2 ,  where  is a prime.

2

n
n

n
n p p

ϖ

−



= 
−

=

 

 

Proof. Part (a) is just a direct consequence from the fact that the number of 

irreducible characters is equal to the number of conjugacy classes. For part 

(b), since 2 2n
D

r
=  and so 2n

D

r
 is abelian, then 

2
'

n
D r⊆ ,  refer 

Theorem 3.10 in (Isaacs, 1992). If n is prime, then 
2

' 1
n

D =  or 
2

'
n

D r= . If 

2
' 1

n
D = , then 

2n
D  is abelian which is impossible. Therefore, we conclude 

that 
2

'
n

D r= . Next, assume 2n p= , where p  is a prime.  Note that 

2 2
2 2 4n n

rD D
rr r

= =  and so 2
2

n
D

r
 is abelian, then 

2

2
'

n
D r⊆ .  

Since 2r p= , then either 
2

' 1
n

D =  or 
2

2
'

n
D r= , and hence the result will 

follow directly. Part (c) follows from part (b). Part (d) follows directly from 

part (a) and (c).  Q.E.D.                                                                                                    

                                 

The following lemma is used to obtain the minimum distance of I
µ
. 
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Lemma 2.7. If 
1 2

µ µ⊆ , then 
2 1

I I
µ µ

⊆ and so ( ) ( )
21

d I d I
µ µ

≤ . 

Proof.  If 
2

u I
µ

∈ , then 0ue =  for all 
2

e µ∈ . Since 
1 2

µ µ⊆ , then 0ue =  for 

all 
1

e µ∈  and so 
1

u I
µ

∈ . For the second assertion, assume ( )
2

d I t
µ

= . If 

2
u I

µ
∈  with ( )wt u t= and ( ) ( )

1
,  wt u wt v v I

µ
≤ ∀ ∈ , then ( )

1
d I t

µ
= . On the 

other hand, if 
2

u I
µ

∈  with ( )wt u t=  and ( ) ( )
1

,  for some wt u wt v v I
µ

> ∈ , 

then ( )
1

d I t
µ

< . Thus, the result follows directly.                                    

Q.E.D. 
 
 

3.    MINIMUM DISTANCE OF DIHEDRAL GROUP CODES 

3.1 Codes defined over FD6 

Let 
3

| 1H r r= =  and so 
6

D H sH= ∪ . From Proposition 2.6, 
6

D  consists 

of three irreducible characters (two are linear and one is nonlinear) 

1 2 3
,   and χ χ χ , and each of these characters will correspond to a unique 

idempotent (refer Proposition 14.10; James and Liebeck, 1993) as follows: 

 

( )1 1

1

6
e H sHχ ↔ = + , ( )2 2

1

6
e H sHχ ↔ = −  and  

3 3

1
1

3
e Hχ → = − . 

 

Let 
2 2

1 2 3 4 5 6
u r r s rs r sλ λ λ λ λ λ= + + + + + be any elements in 

6
,

i
FD Fλ ∈ for 

i = 1, 2, 3, 4, 5, 6, then 

( )
6

1 1
1

i
i

ue eλ
=
∑=   (1) 

( )
3 6

2 2
1 4

i i
i i

ue eλ λ
= =
∑ ∑= −   (2) 

( ) ( ) ( )

( ) ( ) ( )

2

3 1 2 3 1 2 3 1 2 3

2

4 5 6 4 5 6 4 5 6

1
2 2 2

3
2 2 2

ue r r

s rs r s

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

=  − − + − + − + − − + +

− − + − + − + − − + 

    

  

(3) 

  

Lemma 3.1. Let 
1 2
,e e and 

3
e be those idempotents in 

6
FD as constructed 

above, then: 
 

(i) ( ){ }
2

ei
d I =  for 1,2i = . 

(ii) ( ){ }3
3

e
d I = . 
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Proof. We prove part (i) for the case 1i = . The case 2i =  can be proved in a 

similar manner. Assume 
{ }1e

u g Iλ= ∈  for any 
6

g D∈  and 0 Fλ≠ ∈  such 

that ( ) 1wt u = . By equation (1), 
1 1

0ue eλ= ≠ . Hence, we conclude that 

{ }1e
u g Iλ= ∉  and so 

{ }( )
1

2
e

d I ≥ . Clearly, 
{ }1e

u g h I= − ∈  for any distinct 

6
,g h D∈  because by equation (1), 

1 1
(1 1) 0ue e= − =  and so 

{ }( )
1

2
e

d I = . 

              

 For part (ii): if 
{ }3e

u g Iλ= ∈  with ( ) 1wt u = , then 0 Fλ≠ ∈ . 

However, by using equation (3), 
3 3

0ue geλ= ≠  and so 
{ }3e

u g Iλ= ∉  which 

implies ( ){ }3
1

e
d I > . Next, we check whether 

{ }3e
I  consist of codewords of 

weight 2. Assume 
{ }1 1 2 2 3e

u g g Iλ λ= + ∈  such that ( ) 2wt u = , then we have 

either 
1 2
,g g H∈ , 

1 2
,g g sH∈  or 

1
g H∈  and 

2
g sH∈ . For each of these 

possibilities, by using equation (3), we will obtain a set of equations in terms 

of 
1 2
 and λ λ , and upon solving will give the solution 

1 2
0λ λ= =  which is 

impossible. Thus, ( ){ }3
2

e
d I > . Finally, consider u H= , then 

3

1
1 0

3
ue H H H H

 
= − = − = 

 
 and so 

{ }3e
u H I= ∈  and hence ( ){ }3

3
e

d I = .                                                                                                                                                  

Q.E.D. 
 

           From Lemma 3.1 and Remark 2.4, we see that 
{ }ei

I  is a 

( )6,5,2 − group code for 1,2i =  which attain the singleton bound and so are 

MDS codes. However, 
{ }3e

I  is a ( )6,2,3 − group code which is not an MDS 

code. 
 

Theorem 3.2. Let 
1

e , 
2

e  and 
3

e be those idempotents in 
6

FD , then: 

(i) ( ){ , }1 2
2

e e
d I =  

(ii) ( ){ , }3
6

e ei
d I =  for 1,2i = . 

 

Proof. By Lemma 2.7 and Lemma 3.1, we notice that ( ){ , }
2

e ei j
d I ≥  for all 

i j≠ , 1,2i =  and 2,3j = . For part (i), if 
4 5 4

0u s rsλ λ λ= + + ≠ and 
5

0λ ≠ , 

then by using equation (1) and (2), ( )1 4 5 1
ue eλ λ= + and ( )2 4 5 2

ue eλ λ= − −  
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then 
1 2

0ue ue= =  if and only if  
4 5

λ λ= − . Hence, 
{ }4 5 ,1 2e e

u s rs Iλ λ= + ∈ . 

Therefore, ( ){ , }1 2
2

e e
d I = . 

             

 For part (ii), the proof will be similar. We need to find an element 

with weight equal to 6. It can be checked that there are no codewords with 

weight less than 6 in 
{ , }2 3e e

I .  

 

We now check that 
2 2

1 2 3 4 5 6
u r r s rs r sλ λ λ λ λ λ= + + + + +  is a word of 

{ , }2 3e e
I . 

By using equation (2) and (3), we obtain 
 

 ( )2 1 2 3 4 5 6 2
ue eλ λ λ λ λ λ= + + − − −  and 

 ( ) ( ) ( ) 2

3 1 2 3 1 2 3 1 2 3

1
2 2 2

3
ue r rλ λ λ λ λ λ λ λ λ=  − − + − + − + − − +  

  
       ( ) ( ) ( ) ]2

4 5 6 4 5 6 4 5 6
2 2 2s rs r sλ λ λ λ λ λ λ λ λ+ − − + − + − + − − + . 

 

Thus, 
2 3

0ue ue= =  if and only if  

                             ( )1 2 3 4 5 6
0λ λ λ λ λ λ+ + − − − =       (i) 

       
1 2 3

1 2 3

1 2 3

2 0
2 0

2 0

λ λ λ
λ λ λ
λ λ λ

− − = 
− + − = 
− − + = 

                    (ii)        

                             
4 5 6

4 5 6

4 5 6

2 0
2 0

2 0

λ λ λ
λ λ λ
λ λ λ

− − = 
− + − = 
− − + = 

                   (iii) 

 

The unique solution for (ii) is 
1 2 3

0λ λ λ= = ≠  and for (iii) is 

4 5 6
0λ λ λ= = ≠ . Hence, from (i), 

1 1 1 4 4 4
0λ λ λ λ λ λ+ + − − − = which implies 

that 
1 4

0λ λ= ≠ . Therefore, we obtain a nonzero solution and so 

( ){ , }2 3
6

e e
d I = .  Q.E.D. 

 

In Theorem 3.2, we have constructed two families of group codes, 

{ , }1 2e e
I  is a ( )6,4,2 − MDS group code  and 

{ , }3e ei
I  is a ( )6,1,6 − group code for 

1,2i = . 
 

3.2 Codes defined over FD8 

Let 
4

| 1H r r= =  and so 
8

D H sH= ∪ . Note that 
2 4

| 1K r r H= = ≤ . 

From Lemma 2.6, we see that 
8

D consists of 5 irreducible characters, in 
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which case, four of them are linear characters and one is nonlinear character. 
Each of this character will correspond to a unique idempotent as follows: 
 

(a) Idempotents correspond to linear characters: 

 ( )1 1

1

8
e H sHχ ↔ = + , ( )2 2

1

8
e H sHχ ↔ = − ,      

            ( )( )3 3

1
1 1

8
e r s Kχ ↔ = − + , and ( )( )4 4

1
1 1

8
e r s Kχ ↔ = − − . 

 

(b) Idempotents correspond to the nonlinear character 
5

χ of degree 2: 

 ( ) ( )2 2

5 5

1 1
2 2 1

4 2
e r rχ → = − = − . 

 

           Let 
2 3 2 3

1 2 3 4 5 6 7 8
u r r r s rs r s r sλ λ λ λ λ λ λ λ= + + + + + + +  be any 

element in 
8

FD such that 
i

Fλ ∈  for i = 1, 2, 3, 4, 5, 6, 7 and 8, then 

( )
8

1 1
1

i
i

ue eλ
=
∑=  (4) 

( )
4 8

2 2
1 5

i i
i i

ue eλ λ
= =
∑ ∑= −  (5) 

( )3 3
1,3,5,7 2,4,6,8

i i
i i

ue eλ λ
= =

∑ ∑= −  
(6) 

( )4 4
1,3,6,8 2,4,5,7

i i
i i

ue eλ λ
= =

∑ ∑= −  
(7) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ]

2 3

5 1 3 2 4 1 3 2 4

2 3

5 7 6 8 5 7 6 8

1

2
ue r r r

s rs r s r s

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

=  − + − + − + + − +

+ − + − + − + + − +
 

(8) 

  

Lemma 3.3. Let { }1 2 3 4
, , ,e e e eµ = , where 

1 2 3
, ,e e e  and 

4
e  are the linear 

idempotents in 
8

FD  if β µ⊆ , then ( ) 2d I
β

= .     
 

 

Proof. If β µ⊆ , then there are four cases to be considered, which are 

1,2,3,β =  or 4.  From Lemma 2.7, we only need to show that ( ) 2d I
β

=  

for β = 4. If β = 4, then 
1 2 3 4
, , ,e e e e  are all in β . If , 0

i i i
u gλ λ= ≠ and 

( ) 1wt u = , then ( )( ) ( )( )1 1 2 2 2 3 3 3
0, 0, 0

i i i i i
ue e ue g e ue g eλ λ χ λ χ= ≠ = ≠ = ≠  

and ( )( )4 4 4
0

i i
ue g eλ χ= ≠ . Hence, 

i i
u g I

β
λ= ∉  indicates that ( ) 2d I

β
≥ .  
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Next, consider 
2

1 3
u rλ λ= + , by using equation (4) to (7):   

 

( ) ( ) ( )1 1 3 1 2 1 3 2 3 1 3 3
, ,ue e ue e ue eλ λ λ λ λ λ= + = + = +     and      ( )4 1 3 4

ue eλ λ= + . 

1 2 3 4
0ue ue ue ue= = = =  if and only if  

1 3
0λ λ= − ≠ . Clearly, u I

β
∈ and so 

( ) 2d I
β

= .  Q.E.D. 

 

From this lemma, we immediately conclude that i β µ⊆ , then I
β
 is 

a ( )8,8 ,2β− −  group code. Furthermore, I
β
 is a MDS code if and only if  

1β = . The next result can be proved by using similar method as Lemma 

3.3.  
 

Lemma 3.4. Let { }5
eµ = where 

5
e is the nonlinear idempotent in 

8
FD , then 

( ){ }5
2

e
d I =  and 

{ }( )
5

dim 4
e

I = . Furthermore, let , 0
i i j j i

u g gλ λ λ= + ≠  and 

0
j

λ ≠ with 
8i j

g g D≠ ∈ , then 
{ }5e

u I∈  if and only if  ,
i j

g g H∈ .    

 

Theorem 3.5. Let { }5
,e eµ = where e is any one of the linear idempotents 

and 
5

e is the nonlinear idempotent in 
8

FD , then ( ) 4d I
µ

=  and so I
µ
 is a 

( )8,3,4 − group code.  
 

 

Proof. Without loss of generality, we only prove for the case { }1 5
,e eµ = . 

By Lemma 2.7 and Lemma 3.3, we know that ( ) 2d I
µ

≥ . By the second 

statement in Lemma 3.4, if , 0
i i j j i

u g gλ λ λ= + ≠  and 0
j

λ ≠ , then either 

,
i j

g g in H or ,
i j

g g in sH or one in H and the other in sH will not produce 

a codeword in I
µ
. This follows from equations (4) and (8) in which always 

gives the solution 0
i j

λ λ= = . Next, for , 0
i i j j k k i

u g g gλ λ λ λ= + + ≠  and 

0
j

λ ≠  and 0
k

λ ≠ , we have either , ,
i j k

g g g all lies in H (resp.  sH ) or  

,
i j

g g  lies in H (resp.  sH ) but 
k

g lies in sH  (resp. H ). For both cases, by 

using equations (4) and (8), u is not contained in I
µ
. Finally, if 

2 3

1 2 3 4 1 2 3
, 0, 0, 0u r r rλ λ λ λ λ λ λ= + + + ≠ ≠ ≠  and 

4
0λ ≠ , then 

( )1 1 2 3 4 1
ue eλ λ λ λ= + + +  and ( ) ( )5 1 3 5 2 4 5

ue e reλ λ λ λ= − + − .  
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Thus, 
1 5

0ue ue= = if and only if 
1 2 3 4

0λ λ λ λ+ + + =  and 
1 3

0λ λ− =  and 

2 4
0λ λ− = . The only solution for the above is 

1 3
0λ λ= ≠  and 

2 4
0λ λ= ≠ , 

So, 
1 2 1 2

0λ λ λ λ+ + + =  implies that 
1 2

2 2 0λ λ+ =  and so 
1 2

0λ λ= − ≠ . 

Thus, we obtain a set of nonzero solution and so u ∈ u I
µ

∈ . In other word, 

( ) 4d I
µ

= .   Q.E.D. 

 

Theorem 3.6. Let 
1 2 3 4 5
, , , ,e e e e e  be the idempotents in 

8
FD , then 

( ){ , , }5
4

e e ei j
d I =  and ( ){ , , }5

dim 2
e e ei j

I = , where , 1,2,3,4,i j i j= ≠ .  
 

 

Proof.  By Lemma 2.7 and Theorem 3.5, we only need to show that there 

exists a codeword of weight 4 in 
{ , , }5e e ei j

I , where , 1,2,3,4,i j i j= ≠ . Since 

most calculations are routined, then we only state a codeword of weight 4 in 
each group code. 
 

(i) 
{ }

2 3

1 2 3 4 , ,1 2 5e e e
u r r r Iλ λ λ λ= + + + ∈ . 

(ii) 
{ }

2 2

1 3 5 7 , ,1 3 5e e e
u r s r s Iλ λ λ λ= + + + ∈ . 

(iii) 
{ }

2 3

1 3 6 8 , ,1 4 5e e e
u r rs r s Iλ λ λ λ= + + + ∈ . 

(iv) 
{ }

2 3

1 3 6 8 , ,2 3 5e e e
u r rs r s Iλ λ λ λ= + + + ∈ . 

(v) 
{ }

2 2

1 3 6 7 , ,2 4 5e e e
u r rs r s Iλ λ λ λ= + + + ∈ . 

(vi) 
{ }

2 3

1 2 3 4 , ,3 4 5e e e
u r r r Iλ λ λ λ= + + + ∈ .

                                                                                                    

Q.E.D. 
 

Corollary 3.7.
 

( ){ , , , }5
1

e e e ei j k
d I =

 
 and

  
( ){ , , , }5

8
e e e ei j k

d I =
 

, where 

{ }, , 1,2,3,4 ,i j k i j k∈ ≠ ≠ .  

 

Proof. The proof is similar to Theorem 3.6, and so without loss of geneality 

we consider only { }1 2 3 5
, , ,e e e eµ = , in the case of { }1 2 5

, ,e e eµ = , 

( ){ , , }1 2 5
4

e e e
d I = , thus we may assume that the code generated by 

{ }1 2 3 5
, , ,e e e eµ = has minimum distance greater than or equal to 4.  

 

By using equations (4), (5), (6) and (8), it can be shown that no codeword of 

weight 4, 5, 6, and 7 in 
{ , , }1 2 5e e e

I  and so we only exhibit there is an element of 

weight 8 in 
{ , , }1 2 5e e e

I . 
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If 2 3 2 3

1 2 4 5 6 7 83
, 0

i
u r r r s rs r s rλ λ λ λ λ λ λ λ λ= + + + + + + + ≠  for 

1,2,3,...,8,i = then  
 

( )1 1 2 3 4 5 6 7 8 1
ue eλ λ λ λ λ λ λ λ= + + + + + + + , 

 

( )2 1 2 3 4 5 6 7 8 2
ue eλ λ λ λ λ λ λ λ= + + + − − − − , 

 

( )3 1 2 3 4 5 6 7 8 3
ue eλ λ λ λ λ λ λ λ= − + − + − + −  and 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ]

2 3

5 1 3 2 4 1 3 2 4

2 3

5 7 6 8 5 7 6 8

1

2
ue r r r

s rs r s r s

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

=  − + − + − + + − +

+ − + − + − + + − +
. 

 

Thus, 
1 2 3 5

0ue ue ue ue= = = =  if and only if  
 

1 2 3 4 5 6 7 8
0λ λ λ λ λ λ λ λ+ + + + + + + = , 

 

1 2 3 4 5 6 7 8
0λ λ λ λ λ λ λ λ+ + + − − − − = , 

 

1 2 3 4 5 6 7 8
0λ λ λ λ λ λ λ λ− + − + − + − = , 

 

1 3 2 4 5 7
, ,λ λ λ λ λ λ= = =  and 

6 8
λ λ= . 

 

Hence,              (i)    
1 2 5 6

0λ λ λ λ+ + + =          

(ii) 
1 2 5 6

0λ λ λ λ+ − − =       

(iii) 
1 2 5 6

0λ λ λ λ− + − =         
 

Upon solving (i) to (iii), we will obtain nonzero solution.  

Hence,
{ , , , }1 2 3 5e e e e

u I∈ and so ( ){ , , , }1 2 3 5
8

e e e e
d I = . 

 

3.3 Codes defined over 
10

FD  

Let 5
| 1H r r= =  and so 

10
D H sH= ∪ . From Lemma 2.6, we see that D10 

consists of 4 irreducible characters, in which case, two of them are linear 
characters and the other two are nonlinear character. Each of this character 
will correspond to a unique idempotent as follows 
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(a) Idempotents correspond to linear characters: 

 ( )1 1

1

10
e H sHχ ↔ = +  and ( )2 2

1

10
e H sHχ ↔ = −  

 

(b) Idempotents correspond to the nonlinear character 
5

χ of degree 2: 

 ( )( ) ( )( )( )4 2 3

3 3

1
4 1 5 1 5

10
e r r r rχ → = + − + + + − − +  and 

               
( )( ) ( )( )( )2 3 4

4 4

1
4 1 5 1 5

10
e r r r rχ → = + − + + + − − +  

  

We sumarize our results in the following theorem. Indeed most of 

them can be proved by using similar argument as for group codes in 
6

FD  

and 
8

FD . 
 

Theorem 3.8. Let { }1 2
,

L
e eµ =  and { }3 4

,
N

e eµ =  be all idempotents in 
10

FD  

which is defined as above. 
 

(i) If 
L

β µ⊆  such that 1β = , then ( ) 2d I
β

=  and ( )dim 9I
β

= . 

(ii) If 
N

β µ⊆  such that 1β = , then ( ) 3d I
β

=  and ( )dim 6I
β

= . 

Furthermore, if  v I
β

∈  with ( ) 3wt v =  then 
10

supp( ) 'v D⊂  or 

10
supp( ) 'v sD⊂ .  

(iii) If { },
i j

e eβ =  for 1,2i =  and 3,4j = ,  then ( ) 4d I
β

=  and 

( )dim 5I
β

= . Furthermore, if  v I
β

∈  with ( ) 4wt v =  then 

10
supp( ) 'v D⊂  or 

10
supp( ) 'v sD⊂ .  

(iv) If 
N

β µ= ,  then ( ) 10d I
β

=  and ( )dim 8I
β

= . Furthermore, if  

v I
β

∈  with ( ) 10wt v =  then 
10 10

supp( )= ' 'v D sD∪ . 

(v) If { }1 2
, ,

j
e e eβ =  for 3,4j = ,  then ( ) 4d I

β
=  and ( )dim 4I

β
= . 

Furthermore, if  v I
β

∈  with ( ) 4wt v =  then 
10

supp( ) 'v D⊂  or 

10
supp( ) 'v sD⊂ . 

(vi) If { }3 4
, ,

i
e e eβ =  for 1,2i = ,  then ( ) 10d I

β
=  and ( )dim 1I

β
= . 

Furthermore, if  v I
β

∈  with ( ) 10wt v =  then 
10 10

supp( )= ' 'v D sD∪ .  
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3.4 Codes defined over 
12

FD  

12
D  consists of six irreducible characters, four are linear characters and two 

are nonlinear characters. Each of this character will correspond to a distinct 
idempotent in the following way. 
 

(a) Idempotents correspond to linear characters: 

( )5

1 1
0

1
(1 )

12

i

i

e r sχ
=
∑↔ = + , ( )5

2 2
0

1
(1 )

12

i

i

e r sχ
=
∑↔ = − ,                   

( )5

3 3
0

1
( ) (1 )

12

i

i

e r sχ
=
∑↔ = − +  and ( )5

4 4
0

1
( ) (1 )

12

i

i

e r sχ
=
∑↔ = − −  

 

(b) Idempotents correspond to nonlinear characters: 

 ( )2 3

5 5

1
2 (1 )

6
e r r rχ ↔ = − − +  and 2 3

6 6

1
(2 )(1 )

6
e r r rχ ↔ = − − −  

 

Let 
6 12

1 7

1 7

i j

i j
i j

u r r sλ λ− −

= =
∑ ∑= +  be any elements in 

12
FD  such that 

1 12
i

F iλ ∈ ∀ ≤ ≤ , then  

( )
12

1 1
1

i
i

ue eλ
=
∑=  (9) 

( )( )6 12

2 2
1 7

i j
i j

ue eλ λ
= =
∑ ∑= + −  

(10) 

( )( )3 3
1,3,5,7 ,9,11 2,4,6,8,10,12

i j
i j

ue eλ λ
= =
∑ ∑= + −  

(11) 

( )( )4 4
1,3,5,8,10,12 2 ,4,6,7 ,9,11

i j
i j

ue eλ λ
= =
∑ ∑= + −  

 (12) 

( ) ( )

( ) ( )
( ) ( )
( ) ( )

3

5 1 2 3 4 5 6 1 2 3 4 5 6

4

1 2 3 4 5 6 1 2 3 4 5 6
2 5

1 2 3 4 5 6 1 2 3 4 5 6
3

7 8 9 10 11 12 7 8 9 10 11 12

7 8

1
2 2 2 2

6
2 2 2 2

2 2 2 2

2 2 2 2

2

ue r

r r

r r

s r s

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ

=  − − + − − + − − + − −

+ − + − − + − + − = − − + −
+ − − + − − + + − − + − − +
+ − − + − − + − − + − −
+ − − +( ) ( ) ]2 5

9 10 11 12 7 8 9 10 11 12
2 2 2r s r sλ λ λ λ λ λ λ λ λ− − + + − − + − − +

 

(13) 

( ) ( )

( ) ( )
( ) ( )
( ) ( )

3

6 1 2 3 4 5 6 1 2 3 4 5 6

4

1 2 3 4 5 6 1 2 3 4 5 6
2 5

1 2 3 4 5 6 1 2 3 4 5 6
3

7 8 9 10 11 12 7 8 9 10 11 12

7 8 9

1
2 2 2 2

6
2 2 2 2

2 2 2 2

2 2 2 2

2

ue r

r r

r r

s r s

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ

=  + − − − + − + − − − +

+ + + − − − − + + − − −
+ − + + + − − − − + + + − −
+ + − − − + − + − − − +
+ + + −( ) ( )

( ) ( ) ]

4

10 11 12 7 8 9 10 11 12
2 5

7 8 9 10 11 12 7 8 9 10 11 12

2 2 2

2 2 2 2

rs r s

r s r s

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ

− − − + + − − −
+ − + + + − − − − + + + − −

 

(14) 
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Theorem 3.9.  Let { }1 2 3 4
, , ,

L
e e e eµ =  and { }5 6

,
N

e eµ =  be all idempotents in 

12
FD which is defined as above. 

 

(i) If 
L

β µ⊆ , then ( ) 2d I
β

=  and ( )dim 12I
β

β= − . 

(ii) If 
N

β µ⊆  and 1β = , then ( ) 2d I
β

=  and ( )dim 8I
β

= . 

(iii) If { }5
,

i
e eβ = , then  ( ){ , }5

2
e ei

d I =  only if 1i =  or 2, and ( ){ , }5
4

e ei
d I =  

only if i = 3 or 4. Furthermore, ( )dim 7I
β

= . 

(iv) If { }6
,

i
e eβ = , then  ( ){ , }6

4
e ei

d I =  only if i = 1 or 2, and ( ){ , }6
2

e ei
d I = ) 

only if i = 3 or 4. Furthermore, ( )dim 7I
β

= . 

(v) ( ) 3
N

d I
µ

=  and
 

( )dim 4I
β

= . 

(vi) ( ) ( ){ , , } { , , }1 2 5 3 4 6
2

e e e e e e
d I d I= =  and ( )dim 6I

β
= . 

(vii) ( ) ( ){ , , } { , , }3 4 5 1 2 6
4

e e e e e e
d I d I= =  and ( )dim 6I

β
= . 

(viii) ( ) ( ) ( ) ( ){ , , } { , , } { , , } { , , }1 3 5 1 4 5 2 3 5 2 4 5
6

e e e e e e e e e e e e
d I d I d I d I= = = =  and ( )dim 6I

β
= . 

(ix) ( ){ , , }5 6
6

e e ei
d I =  for 1,2,3,4,i =  and

 
( )dim 3I

β
= . 

(x) ( ){ , , , }5
6

e e e ei j k
d I = , where , , 1,2,3,4, ,i j k i j k= ≠ ≠  and

 
( )dim 7I

β
= . 

(xi)  ( ) ( ){ , } { , }1 2 3 4
6

e e e e
N N

d I d I
µ µ∪ ∪

= =  and
 

( )dim 2I
β

= . 

(xii)  ( ) ( ){ , } { , }1 3 2 4
12

e e e e
N N

d I d I
µ µ∪ ∪

= =  and ( )dim 2I
β

= . 

(xiii)  If 
N

β µ⊆  and 1β = , then ( ) 6
L

d I
µ β∪

=  and
 

( )dim 4I
β

= . 
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